Input Instructions to the Diversions Package

For Each Simulation:

mxsr, mxsk, nstrctr, idivcb, idivflg, in_tab

- 1. Static data:
 - a) Information for each set of source and sink areas, type of diversion, operation rules, and season parameters associated with a specific structure name are given as input (instructions herein).
 - b) In addition, parameters to compute diversion flow by gravity through a drain structure using an analytical function for the ratting curve (i.e., weir flow) are also required.

For nstrctr number of structures:

	variable name	type	description	example
Structure:	strctr_name	char(16)	name of the structure	S-197,S-334
Surface Water	basin_name_src ¹	char(16)	basin name for the source area	R-S1,R-S3
Management-	basin_name_snk ¹	char(16)	basin name for the sink area	R-S1,R-S3
SWM package				
(FAU):				
Flow conditions:	source within	{Y,N}	Source may be located	Y,Y
	aquifer active	char(3)	inner/outer aquifer active	
	region?		domain (e.g., out of domain	
			when using a surface storage)	
	sink within	{Y,N}	sink may be located inner/outer	Y,Y
	aquifer active	char(3)	aquifer active domain (e.g., out	
	region?		of domain when using a canal	
			as a sink)	
	idiv flag for water	{0,1,2,3}	Flows are curtail by operational	1,2
	way diversions	integer	rules only if idiv=1. Only	
			aquifer/wetland storage is	
			updated by BCF. Sources and	
			sinks storage are not updated.	
			1:historical and target pump	
			diversion at structure,	
			2:drain structure without time	
			lag,	
			3:drain structure with time lag	
	CC 1	1	of one time step	100 0 100 0
	eff_snk	real	Flow sink efficiency	100.0,100.0
			(i.e., eff_snk = $\frac{q^{sk}}{q^{sr}}100$)	
			Where q ^{sr} is flow diverted at	
			source set and qsk is flow	
			diverted at sink set	

-

¹ It is not implemented yet. However, you must supply a value

operation rules	If q>0	lv_sr_on	real	lower limit of source head level	1.10,NA
based on	_	lv_sk_of	real	upper limit of sink head level	3.10,NA
level/flow ² for the	If q<0	lv_sk_on	real	lower limit of sink head level	1.30,NA
wet season:		lv_sr_of	real	upper limit of source head level	2.50,NA
	Max_flow		real	maximum flow curtail	1.0E+06,NA
				diversion flows	
operation rules	If q>0	lv_sr_on	real	lower limit of source head level	1.10,NA
based on		lv_sk_of	real	upper limit of sink head level	3.10,NA
level/flow ² for the	If q<0	lv_sk_on	real	lower limit of sink head level	1.30,NA
dry season:		lv_sr_of	real	upper limit of source head level	2.50,NA
	Max_flow		real	maximum flow curtail	1.0E+06,NA
				diversion flows	
Start season:	Start season: Jd_str_wet ¹		integer	julian day for starting wet	180,NA
				season for diversion purposes	
	Jd_str_dry ¹		integer	julian day for starting dry	300,NA
				season for diversion purposes	
Equation	parameters a c_1 drain structure, a_0		real	$q^{sr} = c_0 + c_1(\Delta h)$ only for $q^{sr} > 0$, and $h^{sr} > h_d$	NA,0.0
parameters a			real		NA,1.0
drain structure,			1 "	where c_0 may be defined as the	NA,0.0
idiv=2 or 3:				minimum flow, h_d is the weir	
				elevation and:	
				$\Delta h = a_o + (h^{sr} - h_d)$	

NA=no applicable. Fill up with any numerical value.

For each stress period:

2. Dynamic data:

- a) Cell locations associated with a given source or sink and its structure name. A source or sink can be located in either a wetland cell or any other active/inactive cell within the model grid system.
- b) For idiv=1, flow for each pumping station is provided by the GEN package. For idiv=2 or 3, weir elevation for each structure is provided by the GEN package. itmp_srsk

The following record should appear itmp_srsk times:

lay, row, col, type, strctr_name

Type has two options: source or sink. strctr_name is the name of the structure controlling a specific diversion. This name may be up to 16 characters. Free formatting is used for the input instructions. One or more spaces, or a single comma optionally combined with spaces, must separate adjacent values.

 $^{^2}$ q is the historical flow provided by the GEN package. h^{sr} is the average piezometric head elevation at source set and h^{sk} is the average piezometric head elevation at sink set. If q>0, it is assumed water is diverted from source area to sink area; otherwise, water is diverted from sink area to source area.

Dictionary of Variables used in MODFLOW coupled with the Diversion Package

** • • •		7.00.14
Variable name	range	definition
mxsr		maximum number of source cells that can be active during the simulation.
mxsk		maximum number of sink cells that can be active during the simulation.
nstrctr		current number of structures for any idiv that can be used during the
		simulation
idivcb		both a flag and a unit number.
	>0	unit number on which cell by cell flow terms will be recorded.
	=0	cell by cell flow terms will not be printed or recorded.
	<0	diversions will be printed.
idivflg		a flag for echo in the MODFLOW List file: about structure flows for each
		time step.
	=0	Display warning and basic information
	>0	doesn't display any echo
	<0	echo full output is written in MODFLOW List file
in_tab		unit number from which static data is read for each simulation. By default,
		MODFLOW reads static data from the diversion input data set.
strctr_name		name of the flow or stage structure controlling a specific diversion. This
		name can no longer than 16 characters in length.
idiv		flag for each cell indicating water ways diversions. Values are curtail by
		operational rules for idiv=1. Sources and sinks storages are not updated.
		Only aquifer/wetland storage is updated by MODFLOW BCF
	=1	historical and target diversions or pumping flow is known or provided.
		Flow rate can be positive or negative.
	=2	diversion flow by gravity through a drain structure computed using an
		analytical function for the ratting curve (i.e., weir flow).
	=3	drain structure with lag of one time step
eff_snk		Flow sink efficiency
q		is the historical flow provided by the GEN package. If q>0, it is assumed
•		water is diverted from source area to sink area; otherwise, water is diverted
		from sink area to source area.
qsr		Flow diverted at source set
qsk		Flow diverted at sink set
lv_sr_on		lower limit of the source (for $q > 0$) head level at the structure to be able to
		release water.
lv_sk_of		upper limit of sink (for $q > 0$) head level at the structure to be able to
		receive water
lv_sk_on		lower limit of the sink (for $q < 0$) head level at the structure to be able to
		release water.
lv_sr_of		upper limit of source (for $q < 0$) head level at the structure to be able to
		receive water
Max_flow		the maximum pumping rate assigned to a diversion
Jd_str_wet		Julian day for starting wet season
Jd_str_dry		Julian day for starting dry season
c0, c1		coefficients for the flow rate equation. coefficients must be provided
		according to the units given by the model.
a0		coefficients for the head difference equation. coefficients must be provided
		according to the units given by the model.
itmp_srsk		both a flag and counter

Variable name	range	definition
	<0	diversion source and sink cell from the preceding stress period will be reused
	. 0	
	>=0	itmp_srsk is the number of both source and sink cells during the current stress period. It is recommended that large sink/source flows be distributed to several smaller source or sink if the values become very large.
lay,row,col		Location of the cell containing the source or sink diversion cell. In the case, the location of diversion is in an inactive cell or even outside of the model area, a value of zero should be provided for its layer. In a case a
		layer gets dry, water is only injected to underneath layer specified on input data setlayer, row, column- at the model grid
type	SRC SNK	indicates if is a source or sink source associated with a specified structure sink associated with a specified structure